3.8.78 \(\int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [778]

3.8.78.1 Optimal result
3.8.78.2 Mathematica [A] (verified)
3.8.78.3 Rubi [A] (verified)
3.8.78.4 Maple [A] (verified)
3.8.78.5 Fricas [A] (verification not implemented)
3.8.78.6 Sympy [F(-1)]
3.8.78.7 Maxima [B] (verification not implemented)
3.8.78.8 Giac [A] (verification not implemented)
3.8.78.9 Mupad [B] (verification not implemented)

3.8.78.1 Optimal result

Integrand size = 29, antiderivative size = 149 \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {9 x}{2 a^2}-\frac {2 \cos (c+d x)}{a^2 d}-\frac {6 \sec (c+d x)}{a^2 d}+\frac {2 \sec ^3(c+d x)}{a^2 d}-\frac {2 \sec ^5(c+d x)}{5 a^2 d}+\frac {9 \tan (c+d x)}{2 a^2 d}-\frac {3 \tan ^3(c+d x)}{2 a^2 d}+\frac {9 \tan ^5(c+d x)}{10 a^2 d}-\frac {\sin ^2(c+d x) \tan ^5(c+d x)}{2 a^2 d} \]

output
-9/2*x/a^2-2*cos(d*x+c)/a^2/d-6*sec(d*x+c)/a^2/d+2*sec(d*x+c)^3/a^2/d-2/5* 
sec(d*x+c)^5/a^2/d+9/2*tan(d*x+c)/a^2/d-3/2*tan(d*x+c)^3/a^2/d+9/10*tan(d* 
x+c)^5/a^2/d-1/2*sin(d*x+c)^2*tan(d*x+c)^5/a^2/d
 
3.8.78.2 Mathematica [A] (verified)

Time = 1.15 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.28 \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {500+10 (-103+90 c+90 d x) \cos (c+d x)+544 \cos (2 (c+d x))+206 \cos (3 (c+d x))-180 c \cos (3 (c+d x))-180 d x \cos (3 (c+d x))-20 \cos (4 (c+d x))+250 \sin (c+d x)-824 \sin (2 (c+d x))+720 c \sin (2 (c+d x))+720 d x \sin (2 (c+d x))+351 \sin (3 (c+d x))+5 \sin (5 (c+d x))}{160 a^2 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^5} \]

input
Integrate[(Sin[c + d*x]^4*Tan[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]
 
output
-1/160*(500 + 10*(-103 + 90*c + 90*d*x)*Cos[c + d*x] + 544*Cos[2*(c + d*x) 
] + 206*Cos[3*(c + d*x)] - 180*c*Cos[3*(c + d*x)] - 180*d*x*Cos[3*(c + d*x 
)] - 20*Cos[4*(c + d*x)] + 250*Sin[c + d*x] - 824*Sin[2*(c + d*x)] + 720*c 
*Sin[2*(c + d*x)] + 720*d*x*Sin[2*(c + d*x)] + 351*Sin[3*(c + d*x)] + 5*Si 
n[5*(c + d*x)])/(a^2*d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x 
)/2] + Sin[(c + d*x)/2])^5)
 
3.8.78.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3354, 3042, 3189, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a \sin (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^6}{\cos (c+d x)^2 (a \sin (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {\int (a-a \sin (c+d x))^2 \tan ^6(c+d x)dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (a-a \sin (c+d x))^2 \tan (c+d x)^6dx}{a^4}\)

\(\Big \downarrow \) 3189

\(\displaystyle \frac {\int \left (a^2 \tan ^6(c+d x)+a^2 \sin ^2(c+d x) \tan ^6(c+d x)-2 a^2 \sin (c+d x) \tan ^6(c+d x)\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {2 a^2 \cos (c+d x)}{d}+\frac {9 a^2 \tan ^5(c+d x)}{10 d}-\frac {3 a^2 \tan ^3(c+d x)}{2 d}+\frac {9 a^2 \tan (c+d x)}{2 d}-\frac {2 a^2 \sec ^5(c+d x)}{5 d}+\frac {2 a^2 \sec ^3(c+d x)}{d}-\frac {6 a^2 \sec (c+d x)}{d}-\frac {a^2 \sin ^2(c+d x) \tan ^5(c+d x)}{2 d}-\frac {9 a^2 x}{2}}{a^4}\)

input
Int[(Sin[c + d*x]^4*Tan[c + d*x]^2)/(a + a*Sin[c + d*x])^2,x]
 
output
((-9*a^2*x)/2 - (2*a^2*Cos[c + d*x])/d - (6*a^2*Sec[c + d*x])/d + (2*a^2*S 
ec[c + d*x]^3)/d - (2*a^2*Sec[c + d*x]^5)/(5*d) + (9*a^2*Tan[c + d*x])/(2* 
d) - (3*a^2*Tan[c + d*x]^3)/(2*d) + (9*a^2*Tan[c + d*x]^5)/(10*d) - (a^2*S 
in[c + d*x]^2*Tan[c + d*x]^5)/(2*d))/a^4
 

3.8.78.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3189
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((g_.)*tan[(e_.) + (f_.)*( 
x_)])^(p_.), x_Symbol] :> Int[ExpandIntegrand[(g*Tan[e + f*x])^p, (a + b*Si 
n[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] 
&& IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 
3.8.78.4 Maple [A] (verified)

Time = 0.76 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.03

method result size
parallelrisch \(\frac {\left (-720 d x +664\right ) \sin \left (2 d x +2 c \right )-900 d x \cos \left (d x +c \right )+180 d x \cos \left (3 d x +3 c \right )-351 \sin \left (3 d x +3 c \right )-5 \sin \left (5 d x +5 c \right )+830 \cos \left (d x +c \right )-544 \cos \left (2 d x +2 c \right )-166 \cos \left (3 d x +3 c \right )+20 \cos \left (4 d x +4 c \right )-250 \sin \left (d x +c \right )-500}{40 d \,a^{2} \left (5 \cos \left (d x +c \right )-\cos \left (3 d x +3 c \right )+4 \sin \left (2 d x +2 c \right )\right )}\) \(154\)
derivativedivides \(\frac {-\frac {1}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {8 \left (\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8}+\frac {1}{2}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-9 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {7}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {31}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d \,a^{2}}\) \(168\)
default \(\frac {-\frac {1}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {8 \left (\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8}+\frac {1}{2}\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-9 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {7}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {31}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d \,a^{2}}\) \(168\)
risch \(-\frac {9 x}{2 a^{2}}-\frac {i {\mathrm e}^{2 i \left (d x +c \right )}}{8 d \,a^{2}}-\frac {{\mathrm e}^{i \left (d x +c \right )}}{d \,a^{2}}-\frac {{\mathrm e}^{-i \left (d x +c \right )}}{d \,a^{2}}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d \,a^{2}}-\frac {2 \left (-40 \,{\mathrm e}^{3 i \left (d x +c \right )}+75 i {\mathrm e}^{4 i \left (d x +c \right )}+30 \,{\mathrm e}^{5 i \left (d x +c \right )}-78 \,{\mathrm e}^{i \left (d x +c \right )}+60 i {\mathrm e}^{2 i \left (d x +c \right )}-27 i\right )}{5 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{5} d \,a^{2}}\) \(174\)
norman \(\frac {\frac {90 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {72 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {81 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {117 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {189 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {117 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {90 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {189 x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {72 x \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {64}{5 a d}-\frac {81 x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {18 x \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {9 x}{2 a}-\frac {78 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {396 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}-\frac {9 x \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {9 \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {211 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 d a}-\frac {436 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}+\frac {18 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}-\frac {819 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}+\frac {634 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}-\frac {696 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}+\frac {461 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}+\frac {136 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}+\frac {684 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d a}-\frac {132 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {36 \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}\) \(525\)

input
int(sec(d*x+c)^2*sin(d*x+c)^6/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/40*((-720*d*x+664)*sin(2*d*x+2*c)-900*d*x*cos(d*x+c)+180*d*x*cos(3*d*x+3 
*c)-351*sin(3*d*x+3*c)-5*sin(5*d*x+5*c)+830*cos(d*x+c)-544*cos(2*d*x+2*c)- 
166*cos(3*d*x+3*c)+20*cos(4*d*x+4*c)-250*sin(d*x+c)-500)/d/a^2/(5*cos(d*x+ 
c)-cos(3*d*x+3*c)+4*sin(2*d*x+2*c))
 
3.8.78.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.89 \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {45 \, d x \cos \left (d x + c\right )^{3} + 10 \, \cos \left (d x + c\right )^{4} - 90 \, d x \cos \left (d x + c\right ) - 78 \, \cos \left (d x + c\right )^{2} - {\left (5 \, \cos \left (d x + c\right )^{4} + 90 \, d x \cos \left (d x + c\right ) + 84 \, \cos \left (d x + c\right )^{2} - 6\right )} \sin \left (d x + c\right ) + 4}{10 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} - 2 \, a^{2} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, a^{2} d \cos \left (d x + c\right )\right )}} \]

input
integrate(sec(d*x+c)^2*sin(d*x+c)^6/(a+a*sin(d*x+c))^2,x, algorithm="frica 
s")
 
output
-1/10*(45*d*x*cos(d*x + c)^3 + 10*cos(d*x + c)^4 - 90*d*x*cos(d*x + c) - 7 
8*cos(d*x + c)^2 - (5*cos(d*x + c)^4 + 90*d*x*cos(d*x + c) + 84*cos(d*x + 
c)^2 - 6)*sin(d*x + c) + 4)/(a^2*d*cos(d*x + c)^3 - 2*a^2*d*cos(d*x + c)*s 
in(d*x + c) - 2*a^2*d*cos(d*x + c))
 
3.8.78.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**2*sin(d*x+c)**6/(a+a*sin(d*x+c))**2,x)
 
output
Timed out
 
3.8.78.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 421 vs. \(2 (137) = 274\).

Time = 0.29 (sec) , antiderivative size = 421, normalized size of antiderivative = 2.83 \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {\frac {211 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {268 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {212 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {84 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {174 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {300 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {300 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {180 \, \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {45 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} + 64}{a^{2} + \frac {4 \, a^{2} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {7 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {8 \, a^{2} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {6 \, a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {6 \, a^{2} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {8 \, a^{2} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {7 \, a^{2} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {4 \, a^{2} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {a^{2} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}} + \frac {45 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}}{5 \, d} \]

input
integrate(sec(d*x+c)^2*sin(d*x+c)^6/(a+a*sin(d*x+c))^2,x, algorithm="maxim 
a")
 
output
-1/5*((211*sin(d*x + c)/(cos(d*x + c) + 1) + 268*sin(d*x + c)^2/(cos(d*x + 
 c) + 1)^2 + 212*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 84*sin(d*x + c)^4/( 
cos(d*x + c) + 1)^4 - 174*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 300*sin(d* 
x + c)^6/(cos(d*x + c) + 1)^6 - 300*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 
180*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 45*sin(d*x + c)^9/(cos(d*x + c) 
+ 1)^9 + 64)/(a^2 + 4*a^2*sin(d*x + c)/(cos(d*x + c) + 1) + 7*a^2*sin(d*x 
+ c)^2/(cos(d*x + c) + 1)^2 + 8*a^2*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 
6*a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 6*a^2*sin(d*x + c)^6/(cos(d*x 
+ c) + 1)^6 - 8*a^2*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 7*a^2*sin(d*x + 
c)^8/(cos(d*x + c) + 1)^8 - 4*a^2*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 - a^ 
2*sin(d*x + c)^10/(cos(d*x + c) + 1)^10) + 45*arctan(sin(d*x + c)/(cos(d*x 
 + c) + 1))/a^2)/d
 
3.8.78.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.07 \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {90 \, {\left (d x + c\right )}}{a^{2}} + \frac {20 \, {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a^{2}} + \frac {5}{a^{2} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}} + \frac {155 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 690 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 1120 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 750 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 181}{a^{2} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{5}}}{20 \, d} \]

input
integrate(sec(d*x+c)^2*sin(d*x+c)^6/(a+a*sin(d*x+c))^2,x, algorithm="giac" 
)
 
output
-1/20*(90*(d*x + c)/a^2 + 20*(tan(1/2*d*x + 1/2*c)^3 + 4*tan(1/2*d*x + 1/2 
*c)^2 - tan(1/2*d*x + 1/2*c) + 4)/((tan(1/2*d*x + 1/2*c)^2 + 1)^2*a^2) + 5 
/(a^2*(tan(1/2*d*x + 1/2*c) - 1)) + (155*tan(1/2*d*x + 1/2*c)^4 + 690*tan( 
1/2*d*x + 1/2*c)^3 + 1120*tan(1/2*d*x + 1/2*c)^2 + 750*tan(1/2*d*x + 1/2*c 
) + 181)/(a^2*(tan(1/2*d*x + 1/2*c) + 1)^5))/d
 
3.8.78.9 Mupad [B] (verification not implemented)

Time = 19.85 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.15 \[ \int \frac {\sin ^4(c+d x) \tan ^2(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {-9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9-36\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-60\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-60\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-\frac {174\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{5}+\frac {84\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{5}+\frac {212\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{5}+\frac {268\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{5}+\frac {211\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{5}+\frac {64}{5}}{a^2\,d\,\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}^5\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^2}-\frac {9\,x}{2\,a^2} \]

input
int(sin(c + d*x)^6/(cos(c + d*x)^2*(a + a*sin(c + d*x))^2),x)
 
output
((211*tan(c/2 + (d*x)/2))/5 + (268*tan(c/2 + (d*x)/2)^2)/5 + (212*tan(c/2 
+ (d*x)/2)^3)/5 + (84*tan(c/2 + (d*x)/2)^4)/5 - (174*tan(c/2 + (d*x)/2)^5) 
/5 - 60*tan(c/2 + (d*x)/2)^6 - 60*tan(c/2 + (d*x)/2)^7 - 36*tan(c/2 + (d*x 
)/2)^8 - 9*tan(c/2 + (d*x)/2)^9 + 64/5)/(a^2*d*(tan(c/2 + (d*x)/2) - 1)*(t 
an(c/2 + (d*x)/2) + 1)^5*(tan(c/2 + (d*x)/2)^2 + 1)^2) - (9*x)/(2*a^2)